Small-time sharp bounds for kernels of convolution semigroups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov kernels, convolution semigroups, and projective families of probability measures

For a measurable space (E,E ), we denote by E+ the set of functions E → [0,∞] that are E → B[0,∞] measurable. It can be proved that if I : E+ → [0,∞] is a function such that (i) f = 0 implies that I(f) = 0, (ii) if f, g ∈ E+ and a, b ≥ 0 then I(af + bg) = aI(f) + bI(g), and (iii) if fn is a sequence in E+ that increases pointwise to an element f of E+ then I(fn) increases to I(f), then there a ...

متن کامل

Convolution Semigroups of States

Convolution semigroups of states on a quantum group form the natural noncommutative analogue of convolution semigroups of probability measures on a locally compact group. Here we initiate a theory of weakly continuous convolution semigroups of functionals on a C∗-bialgebra, the noncommutative counterpart of a locally compact semigroup. On locally compact quantum groups we obtain a bijective cor...

متن کامل

Strong exponent bounds for the local Rankin-Selberg convolution

Let $F$ be a non-Archimedean locally compact field‎. ‎Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$‎. ‎We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$‎. ‎We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$‎. ‎Using the Langlands...

متن کامل

Convolution Kernels for Natural Language

We describe the application of kernel methods to Natural Language Processing (NLP) problems. In many NLP tasks the objects being modeled are strings, trees, graphs or other discrete structures which require some mechanism to convert them into feature vectors. We describe kernels for various natural language structures, allowing rich, high dimensional representations of these structures. We show...

متن کامل

Convolution Kernels for Subjectivity Detection

In this paper, we explore different linguistic structures encoded as convolution kernels for the detection of subjective expressions. The advantage of convolution kernels is that complex structures can be directly provided to a classifier without deriving explicit features. The feature design for the detection of subjective expressions is fairly difficult and there currently exists no commonly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal d'Analyse Mathématique

سال: 2017

ISSN: 0021-7670,1565-8538

DOI: 10.1007/s11854-017-0023-6